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The dichotomy between endophysical/intrinsic and exophysical/extrinsic 
perception concerns how a model--mathematical, logical, computational---universe 
is perceived, from inside or from outside. This paper, the first in a proposed series, 
discusses some limitations and tradeoffs between endophysicalfintrinsic and 
exophysicaYextrinsic perceptions in both physical and computational contexts. We 
build our work on E. E Moore's Gedanken-experiments in which the universe is 
modeled by a finite deterministic automaton. A new type of computational 
complementarity, which mimics the state of quantum entanglement, is introduced 
and contrasted with Moore's computational complementarity. Computer 
simulations of both types of computational complementarity are developed for four- 
state Moore automata. 

1. INTRODUCTION 

This section is mainly expository: we will present the physical and 
mathematical contexts for our work. 

1.1. Physical Complementarity 

Relativity altered the classical concept of physical objectivity, but left 
open the possibility of a supreme mathematician who, in Einstein's view, 
neither cheats nor plays dice. Quantum mechanics goes one step further: the 
experimenter can neither predict nor control certain "spontaneous" micro- 
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physical events. Moreover, the observer is bound by complementarity--that 
is, informally speaking, either experiences a particular type of observation 
(exclusive) or a different, complementary one. 

Physical complementarity appears to be a rather straightforward conse- 
quence of the quantum formalism. Yet the conceptualization of complementar- 
ity has caused considerable attention, concern, thought, and neglect (Jammer, 
1966, 1974). Indeed, physical complementarity is tied up with measurement. 
The notion of measurement, in turn, is a highly nontrivial matter, as contem- 
plations by Wigner (1961), Wheeler (1983), and Bell (1990), among many 
others, show. 

How subtle the issue may get can be best demonstrated by the fact that 
in certain instances it is possible to "reconstruct" the quantum wave function 
after its alleged "collapse" (Greenberger and Yasin, 1989). Thereby, not a 
single (quantum) bit of information should remain available from the previous 
"measurement." In such a scenario, it is possible to "measure" complementary 
observables: the price to be paid amounts to the total ignorance of the first 
"measurement outcome." 

Recently, schemes for an "interaction-free wave function collapse" asso- 
ciated with "interaction-free" measurement schemes have received renewed 
attention (Dicke, 1981; Elitzur and Vaidman, 1993; Vaidman, 1994; Kwiat 
et al., 1995)�9 Compare Bohr's statement (Bohr, 1928; reprinted in Wheeler 
and Zurek, 1983, pp. 89, 103): 

. . .  the quantum postulate implies that any observation of atomic phenomena 
will involve an interaction with the agency of observation not to be neglected 
�9  the impossibility of neglecting the interaction with the agency of measurement 
means that every observation introduces a new uncontrollable element�9 Indeed, 
it fo l lows . . ,  that the measurement of the positional co-ordinates of a particle 
is accompanied not only by a finite change in the dynamical variables, but also 
the fixation of its position means a complete rupture in the causal description of 
its dynamical behaviour, while the determination of its momentum always implies 
a gap in the knowledge of its spatial propagation�9 

with the statement by Gabor (1961, p. 124): "No observation can be made 
with less than one quantum passing through the observed object." Indeed, 
"interaction-free" measurement schemes suggest that it is no longer necessary 
to assume that any measurement has to be associated with the exchange of 
at least one quantum of action. The situation seems to conform more to an 
issue raised by Landauer (1989, Section 2), "What is measurement? If it is 
simply information transfer, that is done all the time inside the computer, 
and can be done with arbitrarily little dissipation." 

The "folklore" understanding of complementarity in general and the 
Heisenberg uncertainty relation in particular is the existence of certain (com- 
plementary) features of a quantum system which cannot be measured and 
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predicted simultaneously with arbitrary accuracy. The first (but not last) 
attempt to overcome a certain vagueness in its definition (Ballentine, 1970, 
pp. 364-367) was undertaken by Pauli (1933), who called two classical 
concepts complementary "if  the applicability [operationalizability] of the 
one (e.g., position coordinate) stands in the relation of  exclusion to that 
[operationalizability] of  the other (e.g., momentum)," in the sense that any 
experimental setup for measuring one object interferes destructively with any 
experimental setup for measuring the other object (Jammer, 1966, p. 355). 

The "canonical" understanding of  complementarity is expressed in Mes- 
siah (1961, p. 154): 

The description of properties of microscopic objects in classical terms requires 
pairs of complementary variables; the accuracy in one member of the pair cannot 
be improved without a corresponding loss in the accuracy of the other member.... 
It is impossible to perform measurements of position x and momentum p with 
uncertainties (defined by the root-mean square deviations) Ax and Ap such that 
the product of AxAp is smaller than a constant unit of action h/2. 

In Prigogine's words (1980, p. 51), "the world is richer than it is possible to 
express in any single language." 

1.2. Moore's "Gedanken" Experiments 

Moore (1956) studied some experiments on finite deterministic automata 
in an attempt to understand what kind of  conclusions about the internal 
conditions of a finite machine it is possible to draw from input-output 
experiments. To emphasize the conceptual nature of his experiments, Moore 
borrowed from physics the term Gedanken-experiment. 

In the next section we shall present the formal notion of a finite automa- 
ton. To understand Moore's approach it is enough at this stage to say that 
the machines we are going to consider are f inite in the sense that they have 
a finite number of  states, a finite number of  input symbols, and a finite number 
of output symbols. Such a machine has a strictly deterministic behavior: the 
current state of the machine depends only on its previous state and previous 
input; the current output depends only on the present state. 

A (simple) Moore experiment can be described as follows: a copy of  
the machine will be experimentally observed, i.e., the experimenter will input 
a finite sequence of input symbols to the machine and will observe the 
sequence of output symbols. The correspondence between input and output 
symbols depends on the particular chosen machine and on its initial state. 
The experimenter will study the sequences of input and output symbols and 
will try to conclude that "the machine being experimented on was in state q 
at the beginning of  the experiment. ''5 

SThis is often referred to as a state identification experiment. 
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Moore's experiments have been studied from a mathematical point of 
view by various researchers, notably Ginsburg (1958), Gill (1961), Chaitin 
(1965), Conway (1971), and Brauer (1984). 

1.3. Finite Determinist ic  A u t o m t a  

A finite deterministic automaton consists of a finite set of states and a 
set of transitions from state to state that occur on input symbols chosen from 
some fixed alphabet. For each symbol there is exactly one transition out of 
each state, possible back to the state itself. So, formally, a finite automaton 
consists of a finite set Q of states, an input alphabet ~, and a transition 
function 8: Q • ~ ---> Q. Sometimes a fixed state, say l, is considered to be 
the initial state, and a subset F of Q denotes the final states. 

A Moore automaton is a finite deterministic automaton having an output 
function f." Q ---> O, where O is a finite set of output symbols. At each time 
the automaton is in a given state q and is continuously emitting the output 
f(q).  The automaton remains in state q until it receives an input signal or, 
when it assumes the state 8(q, or) and starts emitting f(8(q, or)). 

In this paper we are going to almost exclusively concentrate on the case 
of automata on a binary alphabet ~ = {0, 1 } having O = X. So, from now 
on, a Moore automaton will be just a triple M = (Q, 8, j0. 

Let ~* be the set of all finite sequences (words) over the alphabet E, 
including the empty word e; by X + we denote E*\{e}. The transition function 
8 can be extended to a function 8: Q • E* --> Q as follows: 

~(q, e) = q for all q ~ Q 

8(q, orw)=8(8(q,  or),w) for all q e Q, or ~ ~, w e ~* 

The output produced by an experiment started in state q with input 
sequence w e ~* is described by E(q, w), where E is the function 

E: Q • ?~* --> X* 

defined as follows: 

E(q, e) = f (q)  

E(q, orw) = f(q)E(8(q, or), w)), q ~ Q, or ~ ~, w ~ ~* 

and fl Q --> ~ is the output function. 
Consider, for example, Moore's automaton, in which Q = { 1, 2, 3, 4 }, 

= {0, 1 }. The transition is given by Table I, and the output function is 
defined by f(1) = f(2) = f(3) = 0, f (4)  = 1. 

The graphical representation in Fig. 1 will be consistently used in 
what follows. 
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Table I 

q cr ~(q, ~r) q ~r 5(q, or) 

1 0 4 3 0 4 
1 1 3 3 1 4 
2 0 I 4 0 2 
2 1 3 4 1 2 

The experiment starting in state 1 with input sequence 000100010 leads 
to the output 0100010001. Indeed, 

E( I ,000100010) 

= f (  1)f(4)f(2)f( 1 )f(3 )f(4)f(2)f( 1 )f(3)f(4) 

= 0100010001 

Let M = (Q, ~, f )  be a Moore automaton. The language generated by 
M on the state q is L(M, q) = {w ~ •* If(~(q, w)) = 1 }. It is algorithmically 
decidable whether two languages L(M, q), L(M',  q ')  are equal or not (Hopcroft 
and Ullman, 1979). 

1.4.  R e v e r s i b i l i t y  

Everyone is familiar with the strange effects produced by projecting a 
film backward. This "strangeness" is considered to be normal in classical 
dynamics, as was explicitly stated by its founders such as Galileo and Huy- 
gens. 6 Quantum mechanics, in which state preparations and measurements 

6For instance, when they described the implications of the equivalence between cause and 
effect as an axiom for their mathematical model of motion. 

4/1 0,1 3/0  

1/o o 2/0 
Fig. 1. 
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are irreversible, 7 raised serious doubts related to reversibility and initiated 
its abolition, s 

A new perspective on this issue has come recently from computation 
theory. 9 Today's computers erase a bit of information every time they perform 
a computation corresponding to a many-to-one operation (Landauer, 1961; 
Bennett, 1973, 1982; Fredkin and Toffoli, 1982). Therefore, computational 
operations such as the explicit deletion of information or clearing some 
memory are "irreversible." In spite of the fact that in the last 50 years 
the dissipated energy per bit of computational operation has decreased by 
roughly tenfold each five years (Landauer, 1988), the erasure is done very 
inefficiently, and much more than kT energy is dissipated for each bit 
erased.~~ 

In order to improve computer hardware performance we have to continue 
to reduce the energy dissipated by each computational operation. There are 
two alternative ways to approach this problem: (a) improving by conventional 
methods, i.e., improving the efficiency with which we erase information; (b) 
ultimately using computational operations that do not erase information, 
i.e., so-called "reversible" computational operations, which can, in principle, 
dissipate arbitrarily little heat. ~ 

The above facts show clearly how important it is to model the idea of 
a reversible computational operation [for an excellent discussion see Bennett 
and Landauer (1984)]. In our case of finite automata, a possible definition 
is the following: the automaton (Q, 8, f )  is reversible if for all states p, q 
Q and u e E* with ~(p, u) = q, there exists a word w e E* such that 
~(q, w) = p. In other words, every input state of a computation can be 
"reached back" from the final state of the computation by means of a suitable 
computation. A stronger definition has been studied in the literature (see 
Bavel and Muller, 1970); we will return to it later. 

2. M OORE ' S  UNCERTAINTY REVISITED 

2.1. Indistinguishability 

Consider now a Moore automaton M = (Q, ~, f) .  Following Moore 
(1956), we shall say that a state q is "indistinguishable" from a state q' (with 

7Up to instances where the wave function is reconstructed. 
S"Active science is thus, by definition, extraneous to the idealized, reversible world it is 

describing" (Prigogine and Stengers, 1984, p. 61). 
9More than 40 years ago Einstein had a similar point: irreversibility is an illusion, a subjective 

impression. There is no irreversibility in the basic laws o f  physics. 
l~ k is Boltzmann's  constant and T is the absolute temperature in Kelvin degrees, so 

kT  ~ 3 • 10 -2~ J at room temperature. 
H As the energy dissipated per irreversible computational operation approaches the limit of In 

2 • kT, the use of reversible operations is likely to become more attractive. 
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respect to M) if every experiment performed on M starting in state q produces 
the same outcome as it would starting in state q'.  Formally, 

E(q, x) = E(q', x) 

for all words x ~ ~+. 
An equivalent way to express the indistinguishability of the states q and 

q' is to require, following Conway (1971, p. 3), that for all w e E*, 

f(~(q, w)) = f(~(q' ,  w)) 

Indeed 

E(q, xlx2 "'" xn) 

= f(q)f(~(q, xl))fC~(q, xtx2))""" fC~(q, X I X 2 " ' "  Xn)) 

q E Q, X l X  2 " ' "  X n E ~ *  

A pair of states will be said to be "distinguishable" if they are not 
"indistinguishable," i.e., if there exists a string x e E § such that E(q, x) q: 
E(q', x). 

Moore (1956) has proven the following important theorem: There exists 
a Moore automaton M such that any pair of  its distinct states are distinguish- 
able, but there is no experiment which can determine what state the machine 
was in at the beginning of the experiment. He uses the automaton displayed 
in Fig. 1 and the argument is simple. Indeed, each pair of distinct states can 
be distinguished by an experiment: 1, 2 by x = 0; 1, 3, by x -- 1; 1, 4 by x 
= 0; 2, 3, by x = 0; 2, 4, by x = 0; and 3, 4, by x = 0. 

However, there is no (unique) experiment capable of distinguishing 
between every pair of arbitrary distinct states. Two cases have to be examined: 

(A) The experiment starts with 1, i.e., x = lu, u e E*. In this case E(I, 
x) = E(2, x), that is, x cannot distinguish between the states 1, 2 as 

E(1, x) = E(I, lu) = f(1)f(8(1, 1))E(8(1, 1), u) 

= f(1)f(3)E(3, u) = 00E(3, u) 

and 

E(2, x) = E(2, lu) = f(2)f(8(2, 1))E(8(2, 1), u) 

= f(2)f(3)E(3, u) = 00E(3, u) 

(B) The experiment starts with O, i.e., x = 0v, v e s In this case 

E(1, x) = E(2, x) 
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that is, x cannot distinguish between the states 1, 3 as 

E(1, x) = E(1, 0v) = f ( l ) f ( 8 ( l ,  0))E(8(I ,  0), v) 

= f (1) f (4)E(4 ,  v) = 01E(4, v) 

and 

E(3, x) = E(3, 0v) = f (3 ) f (8(3 ,  0))E(8(3, 0), v) 

= f(3)f(4)E(4,  v) = 01E(4, v) 

2.2. Computational Complementarity 

The difficulties in understanding and conceptualizing the complementar-  
ity phenomenon served as a motivation for considering extremely simple 
models  featuring complementarity,  t2 

Moore ' s  theorem, described in the above section, can be thought o f  as 
being a discrete analogue of  the Heisenberg uncertainty principle. The state 
o f  an electron E is considered specified if both its velocity and its position 
are known. Experiments can be performed with the aim o f  answering either 
o f  the followingl3: 

I. What  was the position o f  E at the beginning o f  the experiment? 
2. What  was the velocity o f  E at the beginning o f  the experiment? 

For  a Moore  automaton, experiments can be performed with the aim of  
answering either o f  the following: 

I. Was the automaton in state 1 at the beginning of  the experiment? 
2. Was the automaton in state 2 at the beginning o f  the experiment? 

In either case, performing the experiment to answer question 1 changes the 
state o f  the system, so that the answer to question 2 cannot  be obtained. This 
means that it is only possible to gain partial information about the previous 

'2This may be seen as a parallel to the Church-Turing thesis, relating the informal notion of 
"aigorithmically computable function" to the formal term "recursive function." 

13The propositional system obtained from the Moore automaton is the modular lattice -~2 
(Svozil, 1993, pp. 141-147). An exact quantum mechanical analogue has been given by 
Foulis and Randall (1972, Example HI): Consider a device which, from time to time, emits 
a particle and projects it along a linear scale. We perform two experiments. In experiment 
A, the observer determines if there is a particle present. If there is not, the observer records 
the outcome of A as the outcome { 4 }. If there is, the observer measures its position coordinate 
x. Ifx > 1, the observer records the outcome {2}, otherwise {3 }. A similar procedure applies 
for experiment B: If there is no particle, the observer records the outcome of B as {4}. If 
there is, the observer measures the x component Px of the particle's momentum. If Px ----- 1, 
the observer records the outcome { 1, 2 }, otherwise the outcome { I, 3 }. Still another quantum 
mechanical analogue has been proposed by Giuntini (1991, pp. 159-162). A pseudoclassical 
analogue has been proposed by Cohen (1989) and Wright (1990). 
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history of the system, since performing experiments causes the system to 
"forget" about its past. 

Moore 's  automaton is a simple model featuring an "uncertainty princi- 
ple" (Conway, 1971, p. 21), later termed "computational complementarity" 
by Finkelstein and Finkelstein (1983). These types of  models have been 
intensively studied from the point of  view of  their experimental logical 
structure by (;fib and Zapatrin (1990, 1992) as well as by Svozil (1993), 
Schaller and Svozil (1994, 1995, 1996), and Dvur~enski j  et al. (1995). See 
Svozil and Zapatrin (1996) for a comparison of  models. 14 

In what follows we introduce two nonequivalent concepts of computa- 
tional complementarity based upon modeling finite automata. Informally, 
they can be expressed as follows. Consider the class of  all elements of reality ~5 
and consider the following properties. 

A Any two distinct elements of  reality can be mutually distinguished 
by a suitably chosen measurement procedure (Bridgman, 1934). 

B For any element of  reality, there exists a measurement which distin- 
guishes between this element and all the others. That is, a distinction 
between any one of them and all the others is operational. 

C There exists a measurement which distinguishes between any two 
elements of  reality. That is, a single predefmed experiment opera- 
tionally exists to distinguish between an arbitrary pair of  elements 
of  reality. (Classical case.) 

A natural question arises: Do there exist automata having property C? 
The answer is affirmative, and Fig. 2 gives an example of  such an automaton. ~6 

The experiment 10 distinguishes between any pair of distinct states. 
An automaton having C but requiring a longer experiment is presented in 
Section 2.4. 

t4A note of precaution. The analogy between automaton logic and quantum logic must be 
understood on the level of dements of reality. That is, elements of physical reality correspond 
to equivalence classes of automaton states--they are not necessarily associated with single 
automaton states. Every equivalence class is characterized by the requirement that al automaton 
states contained therein respond identically with respect to a particular input-output experi- 
ment. To state the same precaution differently: It would be misleading to assume that any 
automaton state corresponds to a bona fide element of physical reality (though perhaps 
hidden). Because, whereas in models of automaton complementarity it might still be possible 
to pretend that initially the automaton actually is in a single automaton state, which we just 
do not know (such a state can be seen if the automaton is "screwed open"), quantum 
mechanically this assumption leads to a Kochen-Specker contradiction (Kochen and Specker, 
1967; Peres, 1993; Mermin, 1993; Svozil and Tkadlec, 1996). 

~SThe terms "elements of reality," "properties," and "observables" will be used as synonyms. 
*6Note that the automaton in Fig. 2 is connected, i.e., every two states are linked by some 

computation. 
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4/0 3/x 

0,1 

1/1 1 

Fig. 2. 

I 

Complementarity corresponds to the following cases: 

CI Property A but not property B (and therefore not C ): The elements 
of reality can be mutually distinguished by experiments, but one 
of these elements cannot be distinguished from all the others by 
any single experiment. 

CII Property B but not property C: Any element of reality can be 
distinguished from all the other ones by a single experiment, but 
there does not exist a single experiment which distinguishes 
between any pair of distinct elements. 

Only the second type of complementarity deserves more attention. A 
Moore automaton has CII in case: 

1. For every state q there exists an experiment wq (depending upon q) 
such that E(q, wq) :/: E(q', Wq) for every state q' different from q; and 

2. For every experiment w there exist at least two distinct states q, q' 
(depending upon w) such that E(q, w) = E(q', w). 

In view of condition 2, each experiment "generates" a pair of  distinct 
states which exercise a mutual influence, namely they cannot be separated 
by the experiment w; this influence mimics, in a sense, the state of quantum 
entanglement. 17 To put it very pointedly, CII may be conceived as a toy model 
for the EPR effect (Einstein et al., 1935; Penrose, 1990, 1994) as well as for the 
Zou- Wang-Mandel effect (Zou et al., 1991; Wang et al., 1991; Greenberger et 
al., 1993). Under CII, for each experiment w we have at least two states q, 
q' [as distant as we like in terms of the emitting outputs f(q), f(q')]  which 

17 In particular, this influence cannot be used to send an actual message from one state to the other. 
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interact via the experiment w: any measurement of q is affecting q' and, 
conversely, any measurement of q' is affecting q. It is interesting to note that 
this explanation supports Penrose's view (1994, p. 237) that EPR effects 
are puzzle mysteries, that is, genuinely puzzling, but directly experimentally 
supported. Greenberger et al. (1993) call similar experiences simply mindbog- 
gling. In fact, a second "reading" of these phenomena could prove that their 
puzzling nature might "not be so puzzling" after all (see Section 3 for a more 
detailed discussion). 

From a mathematical point of view properties A, B, C can be expressed 
as follows. Let M = (Q, 8, f )  be a Moore automaton. 

�9 The automaton M has property A if every pair of different states 
of M are distinguishable, i.e., for all distinct states q, q' there 
exists a word w ~ E § (depending upon q, q') such that E(q, w) 

E(q', w). 
�9 The automaton M has property B if every state M is distinguishable 

from any other distinct state, i.e., for every state q there exists a word 
w ~ ~+ (depending upon q) such that E(q, w) ~ E(q', w), for every 
state q' distinct from q. 

�9 The automaton M has property C if there exists an experiment distin- 
guishing between each different state of M, i.e., there exists a word 
w e E + such that E(q, w) --/: E(q', w), for all distinct states q, q'. 

Of course, C implies B, which in turn implies A; none of the converse 
implications are true. Moore's automaton (see Fig. 1) has A but non-B. The 
automaton in Fig. 3 has B but non-C. 

4/0 3/1 
q 

~0,1 0,1(~ 
Fig. 3. 
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Indeed, the following pairs of states are distinguishable by every experi- 
ment: (1, 2), (1, 4), (2, 3), (3, 4). Accordingly, 1 is distinguishable from the 
other states by w = 0; 2 is distinguishable by w = 1; 3 is distinguishable 
by w = 0; and 4 is distinguishable by w = 1; so the automaton has property 
B. It does not have property C because: 

�9 Any experiment w which starts with 1, i.e., w = Ix, x E ~*, does 
not distinguish between 1 and 3. 

�9 Any experiment w which starts with 0, i.e., w = 0y, y ~ E*, does 
not distinguish between 2 and 4. 

The above example, though easy to deal with, is not very interesting 
(an explanation of this fact will be given in Section 2.8), as the automaton 
is not reversible (we can reach 4 from 1, but we cannot get 1 from 4). 

Before studying further the above phenomena, we will have to deal with 
some natural mathematical questions: (a) is each of the properties A, B, C 
decidable? (b) How difficult is it to test these properties? 

2.3. Deciding Properties A, B, C 

Are properties A, B, C algorithmically decidable? From the work of 
Conway (1971, Chapter 2), it follows directly that the problem of testing 
whether two states are distinguishable is algorithmically decidable. This 
means that A is algorithmically decidable. In this section we will present a 
uniform proof for the decidability of properties A, B, C. 18 

Start with the automaton M -- (Q, 8, f )  and for each state q e Q 
construct the finite deterministic automaton 

Mq = (Q u {#), ~; x ~, q, ~', Q) 

with initial state q and final states Q; here # is a new symbol added to Q. 
The transition function ~' is defined as follows: ~'(p, (o-, a')) = ~i(p, O-) in 
ca se f (p )  = T, and ~'(p, (o-, "r)) = # otherwise. Here p E Q u {#} and O-, 
T E ~ .  

Accordingly, for p ~ Q and (o-i, I"1)(0"2, T2) "'" (o-n, 1"n) ~ (~2),, 

~r(p, (O-1, '1"1)(O'2, T2) " ' "  (O'n, Tn)) =j(= # 

iff E(p, O-IO-2 " ' "  O 'n- l )  = T I T 2 ' ' "  Tn-lTn 

and in case the above condition holds true 

~"W(p, (O.l, TI)(O'2, T2 ) . . .  (O'n, Tn)) = ~ ( P ,  O'10"2 " ' "  O'n) 

~SOur proof is a language-theoretic one; we have not been able to extend Conway's algebraic 
method to properties B, C. We will return to this question in the next section when dealing 
with the complexity of these decision problems. 
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We claim that for all states p, q ~ Q, 

p, q are distinguishable iff L(Mp) ~ L(Mq) 

Assume first that p and q are distinguishable, that is, there exists w 
~+ such that E(p, w) q: E(q, w). Let w = crl " "  crn and E(p, w) = rfr2 "'" 
%+1- Take an arbitrary letter cry+ l ~ ~ and put 

Ot = ({3"1, '1"1)(O"2, '1"2) ' ' "  (O'n, 'Tn)(O'n+l, Tn+l)  

Clearly, ot E L(Mp)~L(Mq): ~ ( p ,  a)  = ~(p, w) [E(p, w) = "rfr2 "-" %+1], but 
~'(q, a) = #(E(p, w) :# E(q, w)). 

Conversely, assume that L(Mp) ~ L(Mq). Then, there exists a 
L(Mp)kL(Mq) [or ct ~ L(Mq)XL(Mp)]. Let et = (~l, "rt)({r2, x2) " '"  (crn, %), and 
w = O'lCr2 " '"  r From hypothesis, E(p, w) = rl "'" % [a ~ L(Mp)], 
but E(q, w) ~ "r n . . .  % [a qt L(Mq)], so E(p,  w) ~ E(q, w), i . e . ,p ,  q 
are distinguishable. 

We are now able to conclude that properties A, B, C are algorithmically 
decidable. Indeed, first we notice that 

A is true iff L(Mp) :# L(Mq), for all p, q ~ Q, p :/: q 

As the problem of  testing whether L(Mp) ~ L(Mq) is algorithmically 
decidable, it follows that A is decidable. 

For B let Mq, q ~ Q, be defined as above. For each q e Q define the set 

S(q) = N ((L(Mq)XL(Mp)) t3 (L(Mt,)XL(Mq))) 
pEQ, p~q 

Another way of  computing the sets S(q) is to define 

Op,q = (L(Mp)kL(Mq)) U (L(Mq)kL(Mp)) 

for all states p, q. Then we notice the equivalence 

A is true i f f D p , q ~ O ,  for all p , q  E Q, p : / : q  

Consequently, the set S(q) can be defined by 

S(q) = f') Dq,p 
p~Q,p--/:q 

Clearly, 

B is true i f f f o r e v e r y  q ~ Q, S(q) :# 0 

Finally, the decidability of  C follows from the formula 

C is true iff A S ( q ) ~ O  
q~Q 
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2.4. C o m p l e x i t y  I ssues  

First we note that complementarity properties CI, CII cannot appear 
for Moore automata with fewer than four states. 19 Indeed, if  M = (Q, 8, f )  
has fewer  than two states, the s tatement  is clear. So, let Q = { 1, 2, 3 }. We 
only need to consider two cases2~ 

. 

2. 
I f f ( l )  = f ( 2 )  = f (3 ) ,  then no pair  o f  states is distinguishable. 
I f  f ( 1 )  = f ( 2 )  and f ( 1 )  # : f (3) ,  and the states 1, 2 are distinguishable,  
then there exists an exper iment  w E •+ such that E(1, w) :# E(2, 
w). Since f ( 1 )  = f ( 2 )  4: f ( 3 ) ,  E ( I ,  w) ~: E(3, w) and E(2, w) :/: 
E(3, w). Accordingly,  A is equivalent  to C. 

An interesting prob lem is to evaluate how difficult it is to test propert ies 
A, B, C. A way to look at this p rob lem is to evaluate the shortest length of  
exper iments  needed to decide properties A, B, C. This p rob lem has been 
studied for A by some authors (for instance, Chaitin, 1965; Conway,  1971). 
The  main  result (for a binary alphabet)  can be stated as follows: to test A, 
it is sufficient to test the condition E(q, w) ~ E(q', w) for  all words of length 
less than #(Q) - 2. In fact, it is trivial to notice that we need only test the 
above  condit ion for  words of  length equal to #(Q) - 2. 

This  result is no longer true for  B and C. Indeed, 101010101 is the 
shortest word  that distinguishes every  pair  o f  states in the automaton M = 
({1, 2, 3, 4, 5, 6, 7}, ~ , f )  displayed in Fig. 4. 21 

Here  is the argument.  Each w ~ 1§ + 1)* can distinguish 
every  pair  o f  states in M. The  shortest word  in that set is w = 101010101. 
No  shorter exper iment  can replace w22: 

�9 Every  word w e 0(0 + 1)* cannot  distinguish between states 5, 6. 
�9 Every  word w ~ 1+00(0 + 1)* cannot  distinguish between states 4, 5. 
�9 Every  word w ~ 1+01+00(0 + 1)* cannot  distinguish between states 

3 , 4 .  
�9 Every  word w E 1+01+01+00(0 + 1)* cannot  distinguish be tween 

states 2, 3. 

~9This result was noticed by Conway (1971, pp. 20-23) for CI. 
Z~ is worth noticing that this is true regardless of the size of the alphabet. Indeed, assuming 

that X has more than two symbols, the following analysis should be completed with one 
more case: if f(1) 4: f(2),f(2) :~ f(3), and f(l)  :~ f(3), then M has C. 

2~In general, the shortest word that can distinguish every pair of states in the automaton ({ 1, 
2 . . . . .  n }, 8, f), where S(i, 0 ) = i +  1,8(i, 1 )= i ,  f o r l - - < i - - < n - 2 , 8 ( n -  1 , 0 ) = n -  
1, 8(n - 1, 1) = 8(n, 0) = 8(n, 1) = n,f(O = 0, 1 -- i < n - 1,f(n) = 1 has length 2n 
- -  5 .  

2:We next use the classical notation for regular expressions (Hopcroft and Ullman, 1979, 
pp. 28-29). 
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�9 Every word w ~ 1+01+01+01+00(0 + 1)* cannot distinguish between 
states 1, 2. 

2.5. Operators 

A probably better physical way to look at an automaton, which is 
equivalent to the classical mathematical one, is to think of  M in terms of  the 
transformations (operators) T~: Q ---> Q, tr E ~,  T,,(q) = ~(q, tr), as "pushbut- 
tons" allowing the automaton to change its states. Mathematically, we shall 
associate to M a class of  operators (Tw)~Ex., 

Tw: Q ---> Q, Tw(q) = -~(q, w) 

Clearly, for all u, w e X*, T. o Tv = T.v, so (Tw)wEX. is a monoid (Te is the 
neutral element). 23 In fact, this monoid is finite: define the equivalence relation 
u ~- v if T. = Tv, pick from each equivalence class the smallest word (in 
quasilexicographic order), and collect all these words into the finite set S. 
Then each operator T. has a "name" T,, with v E S. 

23This monoid is sometimes called the transition monoid (Clifford and Preston, 1961); for 
more details on the algebraic theory see also G6.cseg and Pefik (1972). 
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Sometimes the monoid of operators is a group, and in this special 
situation both types of complementarity disappear. 24 Here is the mathemati- 
cal justification. 

The following three statements are equivalent: 
GI.  The operators (Tw)w~s form a group. 
G2. Each operator T,,, tr ~ E, is bijective. 25 
G3. Every operator T~, cr ~ E, has a fight inverse. 

The implications from G1 to G2 and from G2 to G3 are trivial. So, let 
us assume that G3 holds, i.e., for every cr ~ E there exists a word x,, 
(depending upon or) such that T,,x,, = To. We shall prove GI.  

Note first that each operator has a fight inverse, that is, for each word 
u there corresponds a word ~ such that Tu~ = T~. Indeed, if u = crttr2 " "  trn, 
then ~ = x,~, . . -  x, u does the job. Now take p = Tuu(q). As 

~(p, ~) = ~(~(q, ~u), ~) = ~(~(q, ~), u~) = ~(q, ~) 

it follows that 

~(p, ~) = ~(q, ~) 

Using again the hypothesis and the above equality, we get 

p = ~(~(p, ~), ~) = ~(~(q, ~), u) = q 

which tells us ~a t  T~ is the inverse of  T,. 
Each of the above equivalent conditions G1-G3  implies the equivalence 

of A, B, and C. Indeed, every operator Tw has an inverse T~. If M has A, 
then for each pair of distinct states q, q' there exists a word Wq#, such that 
E(q,  Wq,q,) =t ~ E(q ' ,  Wq,q,). TO get an experiment which globally distinguishes 
between any two distinct states, we proceed as follows: we concatenate all 
words Wq,q,Wq.q, (when q, q' range in Q are distinct) and we get the word w 
such that for all distinct states q, q', we have E(q, w) =/= E(q', w). 

24If we remove T~ from (T~)werZ, we get a semigroup which has also a very interesting structure; 
for example, this semigroup may be a group even in case ( T , ) ~ ,  is not. For the automaton 
[suggested to us by H. Jtlrgensen (private communication, 1996)] whose transitions are given 

q cr 8(q, ~r) q cr 5(q, ~r) 

1 0 1 3 0 3 
1 1 3 3 1 1 
2 0 1 4 0 4 
2 1 3 4 1 4 

by the table 

one has Ton = Ti0 = Tn and Too = Tun = To. Consequently, (Tu)~z*~lel is a group, but none 
of  the generators To, Tf is injective. 

25As each operator is a function from the finite set Q into itself, it follows that an operator T~ 
is bijective iff it is injective iff it is surjective. 
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Intuitively, the statement "G1-G3 imply the absence of complementar- 
ity" can be understood as follows. Suppose an automaton has one of the 
equivalent properties G1-G3. Suppose further than an observer obtains a 
single copy of it and adopts the following strategy. The observer runs an 
arbitrary number of independent experiments. After each experiment, the 
observer records its outcome and steers the automaton back to its original 
(unknown) state. 26 In this way, the observer can make sure that the experiment 
does not irreversibly destroy potential information about the initial state 
of the automaton. Indeed, the setup is similar to Moore's multi-automaton 
configuration, with the only difference that not all experiments are performed 
simultaneously, but only one at a time. In that way, total and thus classical 
knowledge of the initial state is obtained. 

This strategy fails for quantum systems. There, it is only possible to 
"reverse the wave function collapse" ("reconstruct the state") if no knowledge 
of the measurement outcome is left over. All obtained information is needed 
in the reconstruction process itself. And, since any copying of proper q(u) 
bits of quantum information is not allowed, the strategy fails to produce the 
classical "elements of reality." Because, stated pointedly, the observer either 
can make sure that he recovers the original system, (exclusive) or records a 
single measurement outcome associated with one particular experiment. 

From an observer "from inside," the automaton is reversible, i.e., each 
computation can be reversed. To be more precise, an "inside observer" can 
reverse any computation, but the proof that each computation can be reversed 
can be achieved only at the meta-level, i.e., at the level of a language "speaking 
about the automaton." An external observer is "losing" information in the 
process of monitoring only the outcomes: for such an observer some computa- 
tions cannot be reversed. 

2.6. Measuring the Complexity of Automata 

The size of the monoid of operators is a measure of the complexity of 
the automaton. In what follows we shall refer to this measure as the "size 
of the automaton." 

Experimental tests for the case of four-state automata show that each 
automaton satisfying CI or CII has a noncommutative monoid of operators. In 
physical terms, noncommutativity is a mathematical form of complementarity, 
meaning that "there is no state in which both measurables have well-defined 
values simultaneously." 

How far could one go from the monoid structure associated with auto- 
mata to the unitary transformations encountered in the evolution of quantum 

26Bennett (1973) has used a similar strategy for avoiding a huge memory overhead in revers- 
ible computations. 
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mechanical states between measurements? A few warnings should be issued 
at the very beginning. Automaton logic, like quantum logic, is static. It is 
not concerned with dynamical processes, but with the inference of operational 
statements and their interrelation. Also, quantum systems are defined in the 
entire richness of finite/infinite-dimensional Hilbert spaces and it can be 
expected that no finite structure can faithfully represent such a wealth of 
mathematics (Svozil and Tkadlec, 1996). Therefore, there is little hope for 
complete "isomorphism." 

But can one go further and find a correspondent for unitarity? That is, 
what corresponds to complex conjugation * and transposition t in the automa- 
ton context? As pointed out above, the composition (U*)' should correspond 
to the reverse transition U -n (which exists when the operator monoid is a 
group; in such a case the automaton is reversible). There is one more issue: 
Unitary transformations are generated by Hermitian ones via U(n) = 
exp[itH(n)]. Could the Hamiltonian H(n) be given any meaning in the automa- 
ton context? We shall leave these questions open at the moment. 

2.7. Complementarity: Reversible Instances 

Recall that the automaton (Q, 8, f )  was termed reversible 27 if for all 
states p, q ~ Q and u E ]~* with ~(p, u) = q, there exists a word w ~ ~* 
such that ~(q, w) = p. 

The following two conditions are each equivalent to reversibility: 
1. For all q ~ Q and w ~ E* there exists a word u e ]~* such that 

~(q, wu) = q. 
2. For every state q ~ Q and cr E E there exists a word vq ~ E* 

(depending upon ~ and q) such that ~(q, o-vq) = q. 

We have to prove only the equivalence between the last condition and 
reversibility. Indeed, if u = tr~ .--  trn; then 

~(q, UV~n q'trl ' ' ' trn-l) ' ' "  v~(q,crl)V~) = q 

Each of the above conditions is decidable, as we need to examine only 
words of length less than the size of  Q, due to the Pumping Lemma (see 
Hopcroft and Ullman, 1979, pp. 55-56):  for all q ~ Q, u E ]~*, we have 
~(q, u) = ~(q, w), for some w e ~*  with length less than the size of Q. 

Experimental computations 28 show that out of  359,04029 reversible four- 
state automata: (i) 26,688 satisfy CI; the minimal size of an automaton 

27Condition G3 was used as a definition for "reversibility" by Bavel and Muller (1970); it 
seems to us to be too strong. 

2SSample programs can be obtained from E.C. 
29At this stage no attempt has been made to distinguish between "isomorphic automata." 
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displaying CI is 8 (see example in Fig. 5); the maximal size is 79 (see 
example in Fig. 7); and (ii) 16,128 satisfy CII; the minimal size of an 
automaton displaying CI is 9 (see example in Fig. 6); the maximal size is 
145 (see example in Fig. 8). 

We start with examples of  automata having CI, CII and minimal size. 
The automaton in Fig. 5 has CL Indeed, the automaton has A: the pairs of  
states (1, 2), (1, 3), (1, 4) are distinguishable by any experiment, (2, 3) and 
(2, 4) can be distinguished by w = 1, and (3, 4) can be distinguished by w 
= 01. The automaton does not have B, since for 4, (i) every experiment w 
of the form 0y, y ~ E*, does not distinguish between 2 and 4, and (ii) every 
experiment w of  the form ly, y E E*, does not distinguish between 3 and 4. 

The monoid of  operators has the eight elements given in Table II, and 
the induced table is given in Table III. 

The automaton in Fig. 6 satisfies CIL The automaton has B: the states 
(1, 2), (1, 4), (2, 3), (3, 4) are distinguishable by any experiment, so the state 
1 can be distinguished from any other state by w = 1; 2 can be distinguished 
by w = 0; 3 can be distinguished by w = 1; and 4 can be distinguished by 
w = 0. It does not have C, since (i) if w = 0y, y ~ ~*,  then 1 and 3 are not 
distinguishable, and (ii) if w --- ly, y E ~*,  then 2 and 4 are not distinguishable. 

Table H 

State T~ To 7"1 Too rol Tio Tl I Tool 

1 1 4 1 2 1 4 1 3 
2 2 2 3 2 3 4 1 3 
3 3 4 1 2 1 4 1 3 
4 4 2 I 2 3 4 1 3 
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Table ILI 

o T~ T o TI Too Tol TI0 Ttt Tool 
T~ T~ To T] Too Tot T]o Tll Tool 
To To Too To1 TOO Tool Tto Tit Toot 
Tl Tl T]o TII Too Tll Tm TIl Tool 
Too Too Too Tool TOO Toot Tto Tll Tool 
T01 Tol T m Tll TOO Tit Tm T~l Tool 
/'to TIo Too TII TOO Too l Tio Tll  Too l 
Tll Tll Tlo TI] Too Tit Tl0 Tll Tool 
Tool Tool TIo TH Too Tll TIo Tl I Tool 

4/0 3/1 

0 1 

D 

1/1 o 2/0 
Fig. 6. 

In this case the monoid  o f  operators has the nine elements  given in 
Table IV, and the induced table is given in Table V. 

We continue with examples  of  au tomata  having CI, CII, and maximal  
size. The  automaton in Fig. 7 has CI and m a x i m u m  size (i.e., 79). 

The  pairs o f  states (1, 2), (1, 3), (1, 4) can be dist inguished by any 
experiment .  For  (2, 3) and (2, 4) we can use w = 1; for  (3, 4) we can use 
w = 0. So, it has A. 

The automaton does not have  B, since (2, 4) cannot  be dist inguished 
by  any exper iment  w = 0y, y ~ E*,  and (3, 4) cannot  be dist inguished by 
any exper iment  w = ly, y e E*.  

Table IV 

State T~ T o Tl Too Toa Tio Tl] Toot Tloo 

1 1 2 4 3 1 2 1 4 3 
2 2 3 1 2 1 2 4 4 3 
3 3 2 1 3 1 2 4 4 3 
4 4 2 1 3 1 2 4 4 3 
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Table V 

1515 

o T~ T O TI Too Tol TIo Tll Toll TIoo 
T~ T~ To TI Too Tol TIo Tll Toll Tloo 
To To Too Tol To Tol Tlo T011 TO. TIOO 
Tl Tl TIo Tt I TIOO Tol Tio TI Toll TIOO 
Too Too To Tol Too Tol TIo Toll T01I T, OO 
T01 Tot TIo T0ll Ttoo Tot TIo Tot T011 TlOO 
Tlo Tio TIoo Tot TIo Tol TIo Toll Tolj Tloo 
Tl I Tll Tl0 TI Ttoo Tot Tlo Tll Toll Ttoo 
T011 T0tl Tio Tot Tioo Tol 7"1o T011 T011 Tioo 
TIoo TIoo Tto Tot TIoo Tol TIo T0ll Toll TIoo 

The  automaton in Fig. 8 has CII maximum size (i.e., 145). The pair of  
states (1, 2), (2, 3), (2, 4) can be distinguished by any experiment.  The state 
1 can be distinguished by any other state by w = 1; 2 can be distinguished 
by any experiment;  3 can be distinguished by w = 001; and 4 can be 
distinguished by w = 01. So, it has B. 

The automaton does not have C, since: (i) (3, 4) cannot  be distinguished 
by any experiment  w = ly, y e ~* ;  (ii) if w = (Y', for some n >- 1, then 1 
and 3 cannot be distinguished: E(1, On) = 0 n+l = E(3, On); (iii) if  w = 03nly, 
for some y ~ ~* ,  n --> 1, then 3 and 4 cannot be distinguished: E(1, O3"1) 
= 0 3"+2 = E(4, O 3" 1) and 

~(3, 03"ly) = ~(3, ly)  = ~(1, y) = ~(4, ly)  = ~(4, 03"ly) 

(iv) if w = 03"01y, for  some y E E*,  n --  1, then 1 and 3 cannot be 
distinguished: E(1, O3n01) = 03n+3 = E(4, O3nl) and 

~(1, 03hOly) = ~(1, Oly) = ~(1, y) = ~(3, Oly) = ~(3, 03'q)ly) 

4/0 3/0 

1/1 

4 

0,1 1 / 
/ 
q 

o 

1 
Fig. 7. 
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(v) i f  w = 03n001y, for some y e E*,  n --> 1, then 1 and 4 cannot  be 
distinguished: E(1, O3n001) = 03n+4 = E(1, O3'~)01) and 

g(1, 03n001y) = g ( 1 , 0 0 1 y )  = g ( l ,  y) = g(4, 001y) = g(4, 03n00ly) 

2.8. More About Moore's Example 

The size o f  Moore ' s  au tomaton is 64. This au tomaton can be used with 
different output functions to produce both CI and CII. The complemen t  of  
the original output function leads to CI. To get CII we can use each of  the 
output functions in Fig. 9. 

Let  us prove CII for  the first choice of  f .  Moore ' s  automaton has B, 
since for  1 we can use w = 01, for  2 we can use w = 001, for  4 we can 
use w = 1 (any w is good for  3). The automaton does not have  C, since: (i) 
(1, 2) cannot be dist inguished by  any exper iment  w = ly, y ~ E*;  (ii) i f  

4/0 0,1 3/1 4/1 
& 

0,1 

1 0 

31o 

Fig. 9. 
x/o o 2/0 z/z o 2/z 
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w = On, for some n -->- 1, then 1 and 2 cannot be distinguished: E(1, O ~) = 
0 n + l  = E(2, On), 

~(1, 0) = 4, ~(1, 00) = 2, ~(1,000) = 1 

~(2, o) = 1, ~(2, 00) = 4, ~(2, 000) = 2 

(iii) if w = 03" ly, for some y E X*, n --> 1, then 1 and 2 cannot be distinguished: 
E(1, O3"1) = 03"+2 = E(2, O3"1) and 

~(1, 03"ly) = B(3, ly) = B(3, y) = B(2, ly) = ~(2, 03"1y) 

(iv) if w = 03"01y, for some y E E*, n >-- 1, then 2 an 4 cannot be distinguished: 
E(2, o3n01) = 03n+3 = E(4, o3n01) and 

g(2, 03"01y) = B(2, 01y) = B(3, y) = B(4, 01y) = g(4, 03~Oly) 

(v) if w = 03n001y, for some y E E*, n --> 1, then 1 and 4 cannot be 
distinguished: E(1, O3"001) = 03"+4 = E(1, 03"001) and 

B(1, 03n001y) = ~(1,001y) = B(3, y) = B(4, 001y) = B(4, 03n001y) 

2.9. Complementarity:  Nonreversible Instances 

In the case of nonreversible automata the sizes of automata having CI 
or Cll decrease, in the minimal cases, to 3. Here are two examples. 

The automaton in Fig. 10 has CL Indeed, the automaton has A: the pairs 
(1, 2), (1, 3), (1, 4) are distinguishable by any experiment; the word w = 1 
distinguishes between 2, 3, and 2, 4, while w = 0 distinguishes between 3 
and 4. The automaton does not have B, since the state 3 cannot be distinguished 
from 2 by any experiment starting with 0, and 3 cannot be distinguished 
from 4 by any experiment starting with 1. 

4/0 
( 

1 

0,1 

~ 0 , 1  

3/0 

Fig. 10. 
01@ 
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Table  V I  

State T~ To Tt 

I 1 1 1 
2 2 2 2 
3 3 2 1 
4 4 1 1 

o T, To Tt 
T, T, To Tt 
To To To To 
Tt Ti Tl Ti 

The operators induced by the automaton in Fig. 10 and their composition 
table are presented in Table VI. 

The automaton in Fig. 3 has CII (see the proof in Section 2.2). This 
automaton has minimum size, i.e., 3, which makes the proof for non-C quite 
easy. In this case we have three operators (T~, To, T0 which are different 
from the operators of  the automaton from Fig. 7 (Table VII), but their 
composition tables do coincide. 

3. M O R E  ABOUT ACTORS AND SPECTATORS 

The new type of complementarity, namely CII, introduced in this paper 
mimics in a sense the state of quantum entanglement and may be conceived 
as a toy model for the EPR effect or the Zou-Wang-Mandel  effect (Zou et 
al., 1991; Wang et al., 1991; Greenberger et al., 1993). Being experimentally 
testable, Cllfalls into the class of puzzle mysteries (see Penrose, 1994, p. 237). 

In fact, we believe that a bit of  the mystery associated with EPR effects 
in general and with CII in particular might not be so "puzzling" at all, and 
here are two arguments. 

A random (binary) sequence in the Chaitin-Martin-LOf sense (Chaitin, 
1987, 1990; Calude, 1994) is the prototype of  the ideal chaotic sequence in 
which no prediction can possibly come true and no computation can be 

Table  V I I  

State T~ To Ti 

1 1 1 1 
2 2 2 2 
3 3 2 1 
4 4 2 1 
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successful in approximating more than a finite part of the sequence. However, 
such a sequence satisfies some very interesting deterministic laws. Here are 
two examples: 

�9 A constructive property: each random sequence is Borel normal, in 
the sense that every word of length n over the binary alphabet occurs 
in the sequence with the exact expected probability, i.e., 2 -n 
(Calude, 1994). 

�9 A nonconstructive property: in each random sequence at least one 
of the two symbols 0 and 1 must occur in arithmetic progressions 
of every length (van der Waerden, 1927). 

With reference to normality, in a random sequence each bit has, in the 
long run, a "mysterious" purely deterministic influence on all digits. This 
"effect" can be tested (of course, only on finite initial segments of the 
sequence); it can be proven "from outside," i.e., at the level of the meta- 
language, and it is "unreachable" for any observer from "inside." 

A language-theoretic version of the EPR effect is related to the so- 
called depth hypothesis. Psychologists have measured the "span of immediate 
memory," i.e. the ability to memorize at a glance and repeat correctly random 
digits, nonsense words, various items. It seems that the average ability is 
about seven (Miller, 1956). The depth hypothesis suggests that much of the 
syntactic complexity of a natural language can be understood in terms of 
this memory restriction. 3~ From a mathematical point of view this restriction 
can be modeled by the property of projectivity (Marcus, 1967, Chapter 6), 
which, in a sense, measures the "long-run" syntactic subordination of words 
in natural languages. Again, the depth hypothesis, and more generally any 
syntactic subordination, is "visible" from "outside" and not from "inside." 

4. CONCLUSIONS AND FURTHER WORK 

Building on Moore's work concerning Gedanken-experiments, a new 
type of computational complementarity which mimics the state of quantum 
entanglement was introduced and contrasted with Moore's computational 
complementarity and physical complementarity. Many problems remain for 
further work. We mention here only a few of them: (1) Find better upper 
bounds for testing properties B, C; (2) describe CI, CII for Mealy automata 
and for nondeterministic finite automata; (3) distinguish between isomorphic 
automata; (4) investigate the influence of the size of the underlying alphabet; 
(5) explore the relations between CI, CII, and automata/quantum logics. 

3~ syntax of  English, for instance, has many devices for keeping utterances within the 
bounds of  this restriction; it also has resources to circumvent it, so as to regain the loss of  
expressive power. 
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